ANNUAL EXAMINATION 2020

Centre No. 135
Class-B.Sc.-II
Paper No- III
Time- 3 hrs.
(Only for Regular Students)
Centre Name- Disha College, Raipur (C.G.)
Subject- Mathematics
Paper Name- Mechanics
M.M.-50

Note-Solve any two from each unit. All question carry equal marks.

Unit-I

$$
\frac{T}{l}+\frac{T^{\prime}}{l^{\prime}}=0
$$

The middle points of opposite sides of a jointed quadrilateral are connected by light rods of length I and I'. If T and T' be the tensions in these rods, prove that-

$$
\frac{T}{l}+\frac{T^{\prime}}{l^{\prime}}=0
$$

Q2. I kekl d Sujhdkdkrlizleldj.kKrrdift, A
Find the Cartesian equation of the common catenary.

Q3. 3P, 7P rFk 5P cy Øe'k, d I eckgq= H中 ABC dhrhu H中 kvkaB, BCrfk CAdsvuqn'kf0;k

Forces equal to $3 \mathrm{P}, 7 \mathrm{P}, 5 \mathrm{P}$ act along the sides AB, BC and CA of an equilateral triangle ABC . Find the magnitude, direction and line of action of the resultant.

Unit-II

Two forces act, one along the line $y=0, z=0$ and the other along the line $x=0, z=c$. As the forces very, show that the surface generated by the central axis is $\left(x^{2}+y^{2}\right) z=c y^{2}$

Find the null point of the plane $l x+m y+n z=1$

Find the equation of the central axis of any given system of forces.

Unit-III

 bl dkvkoraky $2 \pi / \cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right) \mathrm{g} \boldsymbol{g}$
A particle is moving with S.H.M. and while making an excussion from position of rest to the other its distances from the middle point of its path at three consecutive seconds are $\mathrm{x}_{1}, \mathrm{x}_{2}$, x_{3}. Prove that the time of a complete revolution is:

$$
2 \pi / \cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)
$$

Find the force directed towards the pole under which the curve $r^{n}=a^{n} \cos n \theta$ can be described.
 d lift, fd $\% \frac{1}{v_{1}^{2}}+\frac{1}{v_{2}^{2}}=\frac{1}{u^{2}}$
If v_{1} and v_{2} be the velocities at the ends of a focal chord of a projectiles path and u, the horizontal component of velocity, then show that. $\frac{1}{v_{1}^{2}}+\frac{1}{v_{2}^{2}}=\frac{1}{u^{2}}$
Unit-IV
 $\mathrm{mldhd}\{\mathrm{kk} \mathrm{dh}$ mRd shzkk dift, A
The greatest and least velocities of a certain planet in its orbit round the sun are 30 and 29.2 km per second respectively. Find the eccentricity of its orbit.

$$
\varphi=A \log (1+B t)
$$

A particle is describing a plane curve. If the tangential and normal acceleration are each constant throughout the motion, prove that angle φ which the direction of motion turns in time t is given by:

$$
\varphi=A \log (1+B t)
$$

where A, B are constants.

The base of a rough cycloidal arc is horizontal and its vertex downowrd. A bead slides along it starting from rest at the cusp and coming to rest at the vertex. Show that $\mu^{2} e^{\mu \pi}=1$ where μ is the coefficient of friction.

Unit-V

 Find the acceleration of a particle in terms of polar coordinates. (Spherical co-ordinates)

A spherical drop of liquid falling freely in a vapour acqures mass by condensation at a constant rate c . Show that the velocity after falling from rest in time is $\frac{1}{2} g t\left[1+\frac{M}{M+c t}\right]$ where M is the initial mass of the drop.

 $\operatorname{tkh} \operatorname{d} v=V e^{-k t}$ and $s=\frac{V}{k}\left(1-e^{-k t}\right)$
A particle is projected with velocity V along a smooth horizontal plane in a resisting medium resistance per unit mass is K . Show that the velocity v after a time t and the distance travelled s in that time are given by: $v=V e^{-k t}$ and $s=\frac{V}{k}\left(1-e^{-k t}\right)$

